Mostrando entradas con la etiqueta Gestion. Mostrar todas las entradas
Mostrando entradas con la etiqueta Gestion. Mostrar todas las entradas

lunes, 8 de mayo de 2017

Continuidad del negocio en el Data Center

Al desarrollar un plan de recuperación, el objetivo es regresar la operación del negocio al nivel en que estaba el día antes de la catástrofe. Si su negocio es tomar pedidos por medio de una línea telefónica y continuar con la entrega de productos, el esfuerzo de recuperación debería estar dirigido hacia el restablecimiento de la operación telefónica y la conexión del personal a los sistemas de procesamiento informático y telefónico, lo cual permitirá que continúen los envíos.
El plan final podrá incluir una instalación redundante en otro sitio remoto que tenga acceso a los datos obtenidos de las copias de seguridad. Si la operación no es tan crítica o la instalación redundante no ha sido considerada por razones presupuestarias, es imprescindible un buen plan de recuperación.
Cada hora perdida decidiendo sobre un enfoque o experimentando con diferentes técnicas es una hora de interrupción al negocio que genera pérdidas.
Las empresas deberán desarrollar un plan integral, de forma artesanal para así enfrentar las consecuencias el día del desastre, ya que no existe una solución única, sino que es propia de cada empresa, diseñada a medida.

Un BCP no es un plan del área de IT solamente, sino que involucra a toda la empresa por completo desde la restauración de servidores hasta las tareas operativas, ejecutivas y directivas.

En el plan interactúan las personas de la organización con la tecnología, los procesos y la infraestructura.
Ciclo de vida del Plan de Continuidad del Negocio:




  • Análisis y planificación: cuando se inicia el proyecto se debe tener en consideración todo el negocio por completo, haciendo un estudio de necesidades y evaluando la situación actual. Luego, se debe hacer un minucioso análisis de riesgos del impacto al negocio (BIA, Business Impact Analysis), análisis de pérdidas, cuantificación de consecuencias, etcétera e identificar las aplicaciones críticas, que forman el núcleo operativo: inventarios de aplicaciones y servidores, diagramas de red e infraestructura. Adicionalmente, hay que identificar los posibles escenarios y análisis de amenazas. En esta etapa, se definirán bajo qué condiciones se activarán los procesos de contingencia y cómo será el camino que se tome para volver a la situación de operación normal.
  • Diseño de solución: se buscará la manera en que se pueda llevar a cabo el plan de contingencia de manera integral desarrollando una estrategia de mitigación. Debe ser comunicado correctamente a todas las áreas, preferentemente siguiendo los estándares. Además se procederá con la elaboración de una lista de prioridades con un orden específico y se confeccionará un checklist para los equipos con identificación de contactos internos y proveedores clave. Se definirán los equipos y los procesos de recuperación así como la selección de la estrategia de backup y los objetivos de los tiempos de recuperación (RTO). Asimismo se establecerá el tiempo máximo de interrupción tolerable (MTPOD), el punto de recuperación objetivo (RPO), la forma de interactuar y los roles clave. 
    • RPO: refleja el punto tolerable de restauración de los datos. Por ejemplo, se define si es aceptable contar con los datos de las 00:00 h del día en que ocurre el desastre, o si se prefiere las 00:00 h del último domingo de la semana en que ocurrió el desastre. Obviamente esto está relacionado con la solución de backup elegida, que será detallada más adelante en este capítulo.
    • RTO: es el tiempo en que se desean tener los datos recuperados y disponibles. Por ejemplo, en cinco horas, diez horas, etcétera.
    • MTPOD: es el tiempo aceptable de recuperación total. Luego de haber alcanzado el RTO, queda pendiente restaurar las operaciones al punto normal. Esto puede requerir configuraciones adicionales que agregan más tiempo a la restauración del servicio.
  • Implementación: es el desarrollo del plan, incluye la puesta en marcha de un ejercicio de simulación, que quizás para empresas chicas o medianas pueda ser inviable por razones presupuestarias, pero que son realmente importantes, como los ejercicios de evacuación de incendios en los edificios, entrenamiento, documentación y capacitación. Es recomendable que todas las tareas sean coordinadas por un Comité de Crisis que debe estar previamente designado y conformado por personas que conozcan bien el negocio, tengan poder y capacidad para tomar decisiones.  Lo importante se debe anteponer a lo urgente, ya que una mala decisión puede ser contraproducente.
  • Testeo y aceptación: en el momento de ejecución del ejercicio de simulación o cuando se  activa el BCP, realmente, la comunicación entre todas las partes tiene un rol fundamental para alcanzar el éxito. Se deberá hacer la verificación, corroborar los pasos correctos, determinar desvíos, identificar puntos débiles, análisis de costos y luego tomar medidas correctivas, llamadas lecciones aprendidas (lesson learned). Ellas realimentarán el proceso de diseño de la solución a fin de introducir mejoras.Es recomendado hacer una prueba completa de todo el BCP al menos una vez al año, aunque pueden hacerse pruebas parciales con menor frecuencia para probar nuevas tecnologías o soluciones parciales para ciertos eventos.
  • Mantenimiento: se debe comunicar y mantener actualizado el plan aprobado, asegurando que el personal esté debidamente entrenado. Hay que mantener un monitoreo continuo para el establecimiento de políticas estratégicas, además de identificar nuevas tecnologías o cambios operativos, legales, regulatorios directivos que permitan mejorar el diseño de la solución.

Se recomienda tener un repositorio de versiones y además un documento de control de cambios entre las distintas versiones para ver de manera simple cuales fueron las mejoras introducidas.
Sin duda estas planificaciones requieren dedicación de recursos, tiempo, recolección de información, infraestructura, etcétera, que en definitiva es dinero, pero si la catástrofe ocurre las consecuencias económicas serían mucho peores.


RTO: Recovery Time Objective. Se mide en horas.
MTPOD: Maximum Tolerable Period of Distruption. Se mide en horas
RPO:Recovery Point Objective es el objetivo deseado de recuperación.

sábado, 7 de septiembre de 2013

Métricas en el Data Center

En este artículo comparto un resumen de las métricas más importantes para medir la eficiencia dentro del Data Center para luego poder tomar acciones correctivas ya que como dijo el célebre autor especialista en managment Peter Drucker, “Lo que no se puede medir, no se puede gestionar”.

PUE: Es uno de los parámetros más comunes para evaluar el desempeño eléctrico de un Data Center, (Power Usage Effectiveness): métrica que mide el valor de la eficiencia eléctrica en relación al consumo eléctrico total. Fue establecido por la organización The Green Grid, en particular por uno de sus directores, Christian Belady, y su fin es establecer un parámetro para identificar qué tan eficiente es el consumo actual de los equipos.

\[PUE=\frac{Consumo Eléctrico Total}{Consumo Eléctrico IT}\]

Ejemplo:
\[\frac{200 kW (Consumo Eléctrico Total)}{100 kW (Consumo Eléctrico IT)} = 2.0 PUE\]

Mientras menor sea el valor PUE, mejor será el aprovechamiento eléctrico, lo que se traduce en menores costos y menores emisiones de CO2, permitiendo reducir la llamada “huella de carbono”.El valor perfecto sería un PUE = 1.0. Este número resulta prácticamente imposible de alcanzar, ya que quiere decir que toda la energía consumida por los equipos es igual a la ingresada en el Data Center para que funcione completamente, y donde la refrigeración, UPS, etcétera, no tuvieron consumo eléctrico. Adicionalmente esta métrica puede subdividirse en 4, para obtener diferentes valores que permitan hacer un análisis más detallado, como se enumeran a continuación:
PUE0: se calcula igual que el PUE, pero se toma el pico del consumo eléctrico sobre el consumo eléctrico de los equipos de IT a la salida de la UPS (ambos en el último año).
PUE1: se calcula igual que el PUE, pero se toma el consumo eléctrico total acumulado sobre el consumo eléctrico de los equipos de IT acumulados a la salida de la UPS, ambos valores medidos en el último año.
PUE2: similar al anterior, pero la carga de los equipos de IT se toma a la salida de la PDU (Power Distribution Unit).
PUE3: similar al anterior, pero la carga de los equipos de IT se mide en la entrada a ellos.

DCiE: Parámetro utilizado en la evaluación de la eficiencia,  derivado del anterior, que mide el porcentaje de eficiencia llamado DCiE (Data Centre infrastructure Efficiency), la cuantificación de DCiE fue creada para entender más fácilmente la eficiencia del Data Center. Por ejemplo, un valor DCiE de 28% equivale a un PUE de 2,8. Por ejemplo, si tenemos una factura por consumo eléctrico de 1.000 dólares, sabremos que 280 dólares fueron los realmente consumidos por los equipos de IT.

\[DCiE=\frac{Consumo Eléctrico IT}{Consumo Eléctrico Total} * 100 =\frac {1}{PUE} * 100\]

WUE: se utiliza para evaluar la eficiencia del consumo de agua en los equipos de refrigeración en relación a la cantidad de kW/h, conocida como por sus siglas WUE (Water Usage Effectiveness), y se define como el uso anual del agua dividido por la cantidad de energía utilizada por el equipamiento TI. Las unidades de WUE son litros por kW consumidos por hora (calculados anualmente)

\[WUE=\frac{Consumo Anual De Agua (Litros)}{Consumo Eléctrico IT (kW/h)}\]

Para más información, pueden consultar el link completo del artículo completo en PDF aquí.

CCF: es una métrica creada por la empresa Upsite, que se utiliza para gestionar la eficiencia de refrigeración en el Data Center, por las siglas de Cooling Capacity Factor. Se calcula mediante el cociente entre la capacidad total de refrigeración sobre la carga de consumo de los dispositivos de IT (a la salida de la UPS) aumentada en un 10% (ese 10% adicional está atribuido otros factores que interfieren en el cálculo, como ser: iluminación, personas, estructura, etc)

\[CCF=\frac{Capacidad Total Refrigeración}{Consumo Eléctrico IT (Salida UPS) *1,1} =\frac {215 kW}{150 kW * 1,1} = 1,3\]

El valor de CCF recomendado es 1,2 or 120%. Lo que significa que la capacidad de refrigeración está funcionando al 120% de la carga TI. Un CCF que oscila entre 1,0 y 1,1 significa que la capacidad de refrigeración redundante es prácticamente nula. Si los valores van de 1,2 a 1,5 es posible que se puedan realizar modificaciones en los sistemas de enfriamiento que permitan ahorrar dinero. Si el valor es superior a 1,5 estamos sin dudas frente a un ambiente donde se pueden hacer muchas mejoras para reducir los costos en enfriamiento. Generalmente la mayoría de los Data Centers entran en esta última categoría.
Articulo original en PDF disponible aquí, Link a la calculadora de CCF online aquí

ERE: es otra métrica importante creada por The Green Grid utilizada para calcular la eficiencia de la reutilización de la energía (Energy Reuse Effectiveness), como por ejemplo podría ser la reutilización del calor generado por los equipos para aclimatar las instalaciones edilicias. Es una fórmula similar al PUE, pero al consumo eléctrico del Data Center (en el numerador) se le resta el ahorro de energía eléctrica generado por la reutilización.

\[ERE=\frac{(Consumo Eléctrico Equipos Data Center) - (Energía Reutilizada)}{Consumo Eléctrico IT }\]

Link articulo original en PDF aquí.
Para un nivel de detalle mayor y orientado con un enfoque puramente ecologista, existe otra métrica relacionada a esta llamada CUE (Carbon Usage Effectiveness), en donde se analiza la cantidad total de emisiones de CO2  causada por los equipos del Data Center sobre el consumo eléctrico de los equipos de IT.      

UUR: la métrica UUR (Utilización Unitaria de Rack) consiste en evaluar el porcentaje de utilización de cada Rack medido en "U" o unidades de Rack. Esta información es útil para comprender la utilización total y poder asociar esa utilización con el consumo o la generación de calor que provoca cada Rack analizando si el flujo de refrigeración es el correcto, ya que lo no es lo mismo un Rack de comunicaciones que solo tiene patchears que otro donde hay cinco cajones de servidores blade.
Por cada uno de los Racks del Data Center se debe hacer este simple cálculo:

\[UUR=\frac{"U"Disponibles-"U" Utilizadas}{"U" Disponibles} * 100 \]

Aquí les dejo una planilla de cálculos con la fórmula, donde solo tienen que completar la cantidad de U utilizadas y el consumo eléctrico por cada Rack. Archivo aquí.
Para aquellas personas que desean tener un detalle más completo de la utilización del espacio, existen otras métricas más complejas que permiten analizar la disponibilidad física dentro del Data Center, como ser: DCSE (Data Center Space Efficiency Metric) es un conjunto de métricas complejas desarrolladas por David Cappuccio (Gartner) que tienen por finalidad establecer la utilización real de los espacios dentro del Data Center.

Conclusión final: todas las métrica previamente enumeradas carecen de poco valor práctico de aplicación si al momento de hacer los cálculos no se tiene preestablecido cuales son los objetivos buscados, ya sea desde una visión ecológica orientada a la sustentabilidad o la intención de reducir costo. La métrica no es un objetivo en si mismo, sino que debe ser una herramienta para la toma de decisiones, basado en la información obtenida históricamente en el transcurso del tiempo.




sábado, 4 de mayo de 2013

DCIM mucho más que una Herramienta de Gestión


La administración de la infraestructura de un Data Center es una tarea compleja, pero por suerte en el mercado existen herramientas relativamente nuevas llamadas DCIM, Data Center Infrastructure Management que proveen la capacidad de lograr un buen rendimiento de los recursos administrados, buscando la optimización y planificación continua de una manera simple, considerando que cada vez hay más interdependencia entre la capa física y la capa lógica de la infraestructura. Esto se logra por medio de un monitoreo integral que facilita la gestión, la eficiencia y mantiene la disponibilidad.
Cuántas veces los administradores de Data Centers escuchamos este diálogo cuando hablamos con los Administradores de red:
¿Para qué se utiliza ese servidor que está encendido allí?
Creo que ese equipo no lo utiliza nadie, pero estaba funcionando desde antes de que ingresara a la empresa. 
Esa respuesta puede parecer ilógica, pero resulta bastante habitual en la práctica, sobre todo en ambientes medianos a grandes. Probablemente ese equipo está encendido desde hace años y nadie lo usa o quizás la aplicación fue migrada a otro servidor, generando calor, consumiendo energía, es decir, haciéndole perder dinero a la empresa innecesariamente.

Antiguamente la misión del responsable del Data Center era solo dar soporte a las necesidades de negocio, cumpliendo con los planes actuales. Pero hoy en día, la tendencia es distinta, la gestión administrada debe ser capaz de brindar una ventaja competitiva para lograr el éxito del negocio, haciéndolo ágil y eficiente de manera confiable.  Los cambios de las economías son muy rápidos y el no ser capaz de responder de forma satisfactoria puede hacer fracasar un proyecto o perder una oportunidad única. Por eso, los ojos deben estar puestos en el futuro y en las próximas tendencias.
Los desafíos pueden tener orígenes muy variados: económicos, tecnológicos, el ámbito de los negocios y lo relacionado con el cumplimiento de normativas o regulaciones, por ello surgieron en los últimos años herramientas como DCIM que facilitan esta tarea, por ejemplo ayudándonos a medir el PUE en tiempo real.

Las funcionalidades de información deseables de una herramienta de gestión DCIM son:
·    Centralización: toda la información puede ser consultada desde un solo lugar.
·    Autodescubrimiento: a medida que se agrega nuevo hardware, deberá ser visualizado en la consola (sea físico o virtual), quizás haya una limitación por fabricante o modelo.
·    Visualización: la herramienta debe ser capaz de mostrar gráficos de capacidad en tiempo real y extraer reportes, para efectuar comparaciones a futuro de la capacidad actual del Data Center, como ser: red, electricidad, UPS, PUE, almacenamiento, temperatura, espacio en Racks, etcétera.
·   Comunicación: capacidad de enviar notificaciones, alertas, correos u otras notificaciones, dadas determinadas condiciones.
·   Generación de alertas preventivas: Mediante la inteligencia predictiva puede ser capaz de notificar los problemas de capacidad a corto plazo. Cabe destacar que un reciente estudio de la consultora IDC concluyó que el 84% de los encuestados han tenido problemas de planificación de la capacidad de la infraestructura (ver paper aquí).


La decisión de adquirir un software de DCIM no es simple, ya que el software es costoso y requiere dedicación de recursos adicionales en la configuración y puesta a punto del sistema. Dichas implementaciones no son simples y pueden llevar tiempo. El objetivo final de una herramienta DCIM es tener el control centralizado de los recursos, generar reportes sobre la base de la información recolectada, y tomar decisiones que permitan optimizar los recursos, generando ahorros en la operatoria, y si bien es una herramienta que se encuentra en amplio crecimiento es importante que elijamos la que mejor se adapta a nuestra infraestructura ya que existen gran variedad de proveedores en el mercado de DCIM y no todos son iguales (ni los precios tampoco, ya que son bastante caras). En 2010 Gartnet predijo que este tipo de herramientas van a tener un crecimiento en penetración en el mercado del 1% al 60% para el año 2014.

El objetivo final de una herramienta DCIM es lograr evolucionar desde el “Caos” que son las planillas del cálculos, a un ambiente “Informado y con aplicaciones consolidadas” para luego evolucionar en un proceso de “Optimización” y por último llegar a un modelo de “Data Center planificado estratégicamente”. Como resultado final de una buena implementación de una herramienta de DCIM se puede ver una Infraestructura inteligente, optimizada y hasta que es capaz de reducir los costos operativos, para más detalles les recomiendo este paper que se puede bajar aquí: "Getting started with DCIM". También les recomiendo este paper sobre planificación estratégica de “Data Center Knowledge Guide to Data Center Infrastructure Management (DCIM)” que se puede bajar aquí.

Para evitar el uso de planillas de cálculo como control de inventario de los equipos dentro del Data Center, que suelen ser estáticas y no están actualizadas debidamente (en especial, cuando hay varios sitios que administrar y el crecimiento es grande), existen herramientas dinámicas que facilitan la tarea de DCIM, como ser:  CA DCIM 4.0 de Computer Associates; Asset Point de Align Communications; InfraStruXure de APC; Operations Manager de HP; Nlyte, OpenData Software de Modius; o Avocent de Emerson, solo por nombrar alguas. Muchos de ellos poseen funcionalidad que les permiten tomar la información de manera automática según el hardware. Les recomiendo leer el paper que se puede bajar aquí: “Enterprise Managment associates – Radar for Data Center Infrastructure Management (DCIM)” publicado en Diciembre del 2012, donde se evalúan muchos de estos productos según sus características más importantes, ya que no todos son iguales, variando en niveles de integración, funcionalidades operativas y de gestión.

Cabe destacar que existe una solución económica (pero estática con pocas funcionalidades) basada en software libre llamada Open DCIM http://www.opendcim.org y que se instala fácilmente, basándose en una solución Web para reemplazar las planillas de cálculos. Complementariamente en el sitio http://www.dcimexpert.com/ se pueden ingresar sugerencias y recomendaciones para mejorar las tareas de gestión.



"Por muy hermosa que sea la estrategia, de vez en cuando debes mirar los resultados" Winston Churchill (1874–1965) Político, escritor británico. Premio Nobel de Literatura en 1953.


domingo, 24 de marzo de 2013

Madurez del Data Center - DCMM

A menudo hablamos de optimización y mejores prácticas para logra un Data Center ecológico y sustentable manteniendo una relación eficiente entre disponibilidad y costos. Otra perspectiva de ver los mismos objetivos es a través del análisis de los distintos componentes que lo integran, analizando la “madurez” del Data Center en base a un modelo referencial desarrollado por la organización “The Green Grid” llamado DCMM (Data Center Maturity Model) publicado en 2011, el cual permite clasificar el nivel de “madurez” de los componentes del Data Center. Este modelo es similar al popular estándar ingenieril para el desarrollo de software: CMM  o también llamado CMMI que establece 5 niveles de perfeccionamiento en la forma que se construye software.
Del mismo modo el DCMM evalúa y clasifica de 0 a 5 los niveles de cada uno de los componentes, donde 0 es el nivel mínimo o también llamado “nivel de caos” y siendo 5 el más eficiente o también llamado “nivel visionario”.

DCMM analiza el Data Center y sus elementos en base a dos puntos principales, como ser la infraestructura física y la tecnología allí alojada en función de la eficiencia y la inversión de recursos.

Infraestructura del Data Center:
  • Alimentación eléctrica: Principalmente toma como base el porcentaje de eficiencia eléctrica, operación, monitoreo, materiales utilizados entre otras variables y determina valores de 0 a 5.
  • Refrigeración: Analiza el PUE de los equipos de refrigeración, los materiales, operatoria, control ambiental y emisiones, entre otros parámetros y en base a eso determina niveles de 0 a 5.
  • Otros: Evalúa de 0 a 5 la capacidad real con respecto a la que se está utilizando, la construcción, los materiales comprados, la iluminación, etc.
  • Gestión: Similar a los puntos anteriores, considerando la eficiencia de consumo eléctrico, de agua, reutilización del calor generado, como se colecta la información (centralizada o descentralizada), etc.

Tecnología de los equipos:
  •  Procesamiento: Evalúa la utilización de procesamiento total del Data Center, adopción de estándares, forma de operación, gestión eléctrica integrada, cantidad de servidores, y en función de cuáles son las aplicaciones que se ejecutan basado en las mejores prácticas y lo clasifica de 0 a 5.
  • Almacenamiento: Se analiza la cantidad de datos almacenados en función de la capacidad disponible, la forma de gestión y operación, la arquitectura, la tecnología y la asignación de espacio, en donde la mejor calificación posible es también 5.
  • Red: Para clasificarlos se tiene en cuenta la utilización de la red, el tráfico de paquetes, la forma de operación, la tecnología utilizada, la topología, la performance y el aprovisionamiento del ancho de banda.
  • Otros: Se analiza la capacidad total de los elementos tecnológicos, la utilización de los mismos, certificaciones de los componentes, documentación relacionada a los equipos (por ejemplo un catálogo), estrategias de reciclado, políticas, etc.
El en gráfico se puede ver como interactuan los distintos componentes para poder alcanzar los distintos niveles en función de la eficiencia y los recursos en base a los distintos niveles alcanzados para cada elemento interviniente en el Data Center.



Para aquellos que deseen profundizar sobre este tema los invito a ver la página oficial de DCMM (en inglés)
Para descargar el gráfico completo detallado en formato pdf hacer click aquí. (en inglés)



"El orden y la simplificación son los primeros pasos hacia el dominio de un tema, el enemigo real es lo desconocido"  -- Thomas Mann  (1875-1955) Escritor alemán. Premio Nobel de Literatura en 1929



jueves, 7 de febrero de 2013

Estándares en el Data Center


En la etapa de diseño del Data Center se evalúan cuales son los estándares que se desearán alcanzar. En ese momento surgen muchas dudas y preguntas relacionadas con el establecimiento de cuáles son los estándares correctos para lograr satisfacer las necesidades del negocio o lo mismo ocurre si  se está evaluando un Data Center de un proveedor. Los cuestionamientos sobre la calidad y los niveles de servicios ofrecidos pueden generar incertidumbre en los clientes. Esta es una tarea dificultosa ya que cumplir con las exigencias de un estándar es muy complejo y costoso. Además en el mercado existen muchos y no es posible cumplir con todos al mismo tiempo ya que tiene objetivos y requerimientos distintos.
Con objetivo de tener una visión simplificada de todos los estándares y como se relacionan entre ellos, he desarrollado un gráfico a modo de resumen, en el cual se que pueden observar como se encuentran agrupados los estándares y Frameworks más importantes en el mundo IT. Además se puede observar la interrelación entre las diversas áreas ya que se hallan agrupados por módulos, que van desde la gestión de los recursos del Data Center, hasta la gestión estrategia del Gobierno de IT.




Los módulos se encuentran agrupados por color según el área de aplicación dentro de IT y se destacan principalmente las siguientes:

  • Gestión Nivel de Servicio: Organización de servicio y Gestión de Incidentes
  • Gestión de Seguridad: Protección de información y Seguridad Física
  • Gestión de Proyectos
  • Gestión de Infraestructura: Gestión de Red (Cableado y Rotulado), Espacio físico, Prevención de incendios, Electricidad, Temperatura y humedad, Racks
  • Gestión de servicios: Gestión de riesgos, Gestión edilicia, Gestión de Infraestructura.
  • Gestión Ambiental.
  • Monitoreo y control de métricas.
  • Continuidad del negocio: Gestión de BCP (Business Continuity Plan), Gestión de DR (Disaster Recovery) y BCP
  • Gobierno de IT, Gestión de RRHH y Gestión administrativa.

Para acceder al gráfico en tamaño alta resolución haga click aquí

A modo de aclaración se debe tener en cuenta la diferencia que existen:  mejores prácticas o Frameworks, regulaciones o estándares, aquí el detalle:

  • Regulaciones: son de carácter obligatorio según el tipo de actividad. Están reguladas por una ley, y no cumplirla puede hacer que el organismo regulador quite la licencia de habilitación al negocio para desarrollar la actividad. Como por ejemplo SOX, HIPAA, etc.
  • Estándares: son disposiciones concretas sugeridas por organismos reconocidos, que en el marco del cumplimiento con las normas establecidas certifican que la empresa cumple con los criterios delineados en el modelo.  Como por ejemplo las normas ISO entre otras.
  • Frameworks: como el nombre de la palabra lo indica, son marcos de trabajo, son los más flexibles, ya que no están regulados. Ofrecen una metodología sugerida de trabajo que se adaptará a las necesidades operativas del negocio. Como por ejemplo ITIL, COBIT, etc.


En caso de existir una regulación local que especifique ciertas medidas que se deban cumplir en el Data Center, estas estarán por encima de las regulaciones internacionales, salvo que los parámetros establecidos en las normas internacionales sean más exigentes que las locales.
Aquí hemos nombrado solo algunos de los estándares más importantes, pero existen muchísimos más, en especial en materia de regulaciones, ya que dependen de cada país y rubro comercial.
Para esta investigación solo se consideraron los últimos estándares aprobados a la fecha o aquellos que se encuentran en etapa de revisión. Los estándares viejos o que fueron reemplazados por otros más nuevos no han sido incluidos con el fin de mantener el gráfico lo más simple posible.

Nota: Se actualizó el gráfico en la sección de construcción edilicia. Se particular se eliminó la norma NBE-CPI-96, derogada desde la aparición del CTE (Código Técnico de la Edificiación).
Gracias a Ana Otin Marcos por tu comentario.