Mostrando entradas con la etiqueta Eficiencia. Mostrar todas las entradas
Mostrando entradas con la etiqueta Eficiencia. Mostrar todas las entradas

sábado, 11 de julio de 2015

Diseño de pasillos y más.....


Han pasado más de 22 años desde que el Dr Robert Sullivan creó por primera vez el diseño de pasillo frío/pasillo caliente mientras trabajaba en como investigador para los laboratorios de IBM.
Años después formalizaría ese diseño para luego convertirlo prácticamente en un standard indiscutible al día de la fecha. En su trabajo "Alternating cold and hot aisles provides more reliable cooling for server farms" publicado en 2002 se explican como ubicar y orientar los racks en el Data Center para optimizar el uso de los sistemas de enfriamiento.

El diseño y la ubicación de los Racks dentro del área del Data Center es vital para lograr una optimización de eficiencia en la refrigeración.
Los Racks deben estar todos alineados formando pasillos opuestos unos con otros, enfrentando la parte delantera de una fila con la parte delantera de la otra. De esa forma, quedan diseñados pasillos intercalados: uno frío y uno caliente, alternadamente. El pasillo por donde sale el aire caliente de los Racks deberá estar en forma opuesta a la siguiente fila. Los equipos toman el aire frío por la parte frontal y expulsan el aire caliente por la parte trasera. 



En el gráfico, se muestra la disposición de los pasillos. El pasillo frío se encuentra refrigerado por el aire que ingresa por el frente de los Racks a través de las rejillas de ventilación (que pueden venir por debajo del piso técnico y de alimentación superior), y luego el aire caliente es expulsado por la parte trasera de los Racks, para reingresar a las unidades de enfriamiento, también conocidas como  CRAC (Computer Room Air Conditioning).
En estos dispositivos, monitorean y mantienen controlada tanto la temperatura como la humedad dentro del Data Center. Poseen una entrada por donde ingresa el aire caliente y una salida por donde expulsa el aire frío. Las unidades de enfriamiento deben estar coordinadas entre sí de forma tal que funcionen de modo sincronizado, haciendo un esfuerzo cooperativo, y donde la distribución de la carga es equitativa, maximizando así la vida útil de los componentes y balanceando la energía consumida.

Si estamos armado un Data Center desde cero, la mejor estrategia de optimización de espacio es inversa a la lógica convencional de diseñar primero las paredes, las columnas y puertas en un espacio vacío que luego será amoblado con cientos de equipos computacionales. Es decir, lo que se debería hacer en primer lugar, es diseñar la disposición de los Racks, ubicación de pasillos (fríos y calientes), equipos de refrigeración, etcétera.  Una vez dispuesto el diseño de la distribución de todos los elementos, es el momento de colocar las paredes, puertas y columnas en el plano. De esta forma, se logrará un máximo aprovechamiento del espacio físico, evitando así espacios muertos inutilizables.
Para tener un mejor rendimiento en los equipos de aire acondicionado, hay que disminuir el consumo eléctrico y mantener la temperatura controlada. Se recomienda hacer una aislación completa entre los pasillos, ya sea al comienzo o al final de los Racks, colocando puertas para poder acceder al pasillo aislado. Dicha separación de pasillos impide que el aire se mezcle, mejorando la temperatura y disminuyendo el consumo.

Sobre la base de las recomendaciones de la norma TIA/EIA-942, los pasillos fríos deben tener 1,20 m de ancho (hasta 0,9 es aceptado), y deberán tener una temperatura no mayor a los 25°C. Por otra parte, los pasillos calientes deben tener 0,9 m de ancho (hasta 0,6 es aceptado), funcionando a una temperatura que puede oscilar entre 36°C y 47°C, dependiendo de la carga y el uso de los Racks en ese pasillo.

En próximos artículos hablaremos de la importancia de la circulación del flujo del aire entrante y saliente.



.

domingo, 25 de mayo de 2014

Libro publicado y sorteo

Me complace anunciar que ha sido publicado el primer libro sobre infraestructura de Data Centers en español y también los invito a participar del sorteo de 2 ejemplares.
Este libro está concebido para todos aquellos que desean abordar por primera vez la comprensión de los elementos que integran un Data Center o están ya familiarizados con el tema, pero desean profundizar y ampliar sus conocimientos previos. Por ese motivo, esta obra es una herramienta práctica tanto para los estudiantes universitarios como para los responsables del planeamiento, diseño, implementación y operación de un Data Center en las empresas.
Los consejos, estrategias y recomendaciones que se encuentran a lo largo del libro son el resultado de una extensa investigación Se inspiran en las nuevas técnicas, los estándares más novedosos y las últimas tendencias a fin de optimizar el funcionamiento actual del Data Center, y brindarle al negocio una mejora competitiva. En ese sentido, se desarrollan una serie de propuestas destinadas a la mejora de las prácticas actuales de la industria así como al diseño de planes de contingencia.

El libro cuenta con el prólogo del Lic. Carlos Tomassino.





El libro está editado por Alfaomega ya encuentra disponible para adquirir en formato electrónico (formato ePub). La edición en papel esta llegando a los diversos países.


SORTEO:

El día 24/06/2014 se sortearán 2 ejemplares en formato electrónico ePub. Para participar concurso deberás enviar tus datos personales (nombre, apellido, correo electrónico, país de residencia)  a datacentershoy@hotmail.com
Los ganadores serán anunciados el 25/6/2014 en este mismo post.

GANADORES
Felicitamos a los ganadores del sorteo: Yuri Perales de Perú y a Pablo Astrada de Argentina.

Muchas gracias a la gente de Argentina, España, Perú, México, Chile, Ecuador, Guatemala, Costa Rica, Colombia, República Dominicana y Venezuela por haber participado.


viernes, 10 de enero de 2014

UPS Giratoria (Flywheel UPS): un Nuevo Paradigma

La UPS giratoria es un sistema que asegura la continuidad del suministro eléctrico basado en un concepto antiguo, que consiste en transformar la energía cinética en energía eléctrica. Este dispositivo conlleva a un cambio paradigma para la mayoría de los Data Centers para los cuales una UPS tiene que tener baterías sí o sí.

Si a usted le preguntaran en qué país se inventó el reloj digital de cuarzo, probablemente dirá que fue en Japón, pero la respuesta es incorrecta.
En el año 1968 Suiza controlaba el 90% del mercado mundial de relojes. Un día un técnico de una de las mayores empresas de relojería mostró a sus jefes un nuevo modelo que acababa de inventar. Se trataba de un reloj electrónico de cuarzo. Su superior observó el prototipo y le dijo: “Esto no es un reloj”, y no dio ninguna importancia al descubrimiento, ya que no poseía cuerda, mecanismos ni engranajes. Le permitieron quedarse con la patente e incluso ir con el invento a una feria de relojería. Pasaron los japoneses y compraron. Poco tiempo después pusieron a la venta el reloj de cuarzo. Para el año 1982, el 90% del mercado que controlaban los suizos, se redujo al 15%. Perdieron el liderazgo y cincuenta mil puestos de trabajo por culpa de la nueva tecnología, ¡inventada por un suizo!

La UPS giratoria (también llamada o UPS rotativa o Flywheel UPS) funciona haciendo mover una rueda metálica muy pesada (de 300 kg o más) por medio de la energía eléctrica provista por la red, haciéndola girar a gran rapidez (entre 33000 y 77000 RPM según el fabricante), y por medio de la levitación electromagnética al vacío no entra en contacto con otros elementos, evitando así el rozamiento que frenaría la rueda. La inercia generada le permite rotar a gran velocidad durante un tiempo prolongado ya que no hay fricción. Así ese movimiento de energía cinética acumulada, entregará corriente eléctrica cuando se interrumpa el suministro de red. Si el suministro eléctrico se detiene, la rueda de gran masa que está  girando a muchas revoluciones es capaz de proporcionar suficiente energía al Data Center durante unos segundos (entre 15 y 60 según la configuración).
La mayoría de la gente tiende a apegarse a la antigua tendencia de que una UPS debe tener la capacidad suministrar energía por al menos 15 minutos en caso de interrupción. Lo cierto es que este es un pre concepto heredado de los servidores Mainframe, cuyos procesos de apagado controlado demoraba ese tiempo, pero hoy en día apagar cualquier equipo actual demora mucho menos tiempo, y más aún si la instalación cuenta con generador.
Actualmente los generadores modernos son capaces de proveer energía estabilizada entre 2 a 10 segundos desde que se detecta la interrupción. ¿Qué sentido tiene tener una UPS con baterías que permite operar por 15 minutos cuando el generador entrega energía estabilizada solo en 5 segundos?




A continuación se detallan las principales ventajas y desventajas de las UPS giratorias en comparación las UPS tradicionales de batería.
Ventajas

  • Vida útil mayor a 20 años
  • Es más económica, teniendo en cuenta el costo a lo largo de la vida útil si se la compara con la UPS tradicional. Se estima un retorno de la inversión en aproximadamente tres años.
  • No utiliza baterías, produciendo grandes ahorros de energía, contaminación, enfriamiento, reemplazo y mantenimiento (sólo utiliza una pequeña batería para el arranque).
  • Ocupa menor superficie (por ejemplo, una UPS de 300 kVA ocupa solo 25% del espacio de una UPS de Conversión Doble, aunque puede llegar a pesar 2500 kg)
  • Su eficiencia oscila entre el 95% y el 98% (las UPS de batería tiene en promedio una eficiencia del 92%)
  • Su tiempo de carga es bajo: entre tres y ocho minutos, comparado con la UPS tradicional que puede llegar a tardar entre ocho y diez horas para completar la carga.
  • La operatoria es silenciosa (entre 45 y 70 decibeles a un metro de distancia).
  • Tiene una mayor amplitud térmica operacional (comparada con la UPS de batería)
  • Genera poca temperatura. Por ejemplo: una UPS de 300 kVA de 1.5 x 0.8 m y una altura menor a 2 m genera entre 5 kW/h y 7 kW/h de calor.
  • Las mediciones de la capacidad de la carga brindan datos más certeros comparados con la UPS de baterías.
  • MTBF: >50000 horas (las baterías de las UPS tiene un MTBF: <2200 horas)


Desventajas

  • Su inversión inicial es elevada.
  • Tiene poco tiempo de energía de resguardo, lo que genera una mayor dependencia del generador



"Si hoy fuese el último día de mi vida, ¿querría hacer lo que voy a hacer hoy? Y si la respuesta era No durante demasiados días seguidos, sabía que necesitaba cambiar algo."
Steve Jobs

sábado, 7 de septiembre de 2013

Métricas en el Data Center

En este artículo comparto un resumen de las métricas más importantes para medir la eficiencia dentro del Data Center para luego poder tomar acciones correctivas ya que como dijo el célebre autor especialista en managment Peter Drucker, “Lo que no se puede medir, no se puede gestionar”.

PUE: Es uno de los parámetros más comunes para evaluar el desempeño eléctrico de un Data Center, (Power Usage Effectiveness): métrica que mide el valor de la eficiencia eléctrica en relación al consumo eléctrico total. Fue establecido por la organización The Green Grid, en particular por uno de sus directores, Christian Belady, y su fin es establecer un parámetro para identificar qué tan eficiente es el consumo actual de los equipos.

\[PUE=\frac{Consumo Eléctrico Total}{Consumo Eléctrico IT}\]

Ejemplo:
\[\frac{200 kW (Consumo Eléctrico Total)}{100 kW (Consumo Eléctrico IT)} = 2.0 PUE\]

Mientras menor sea el valor PUE, mejor será el aprovechamiento eléctrico, lo que se traduce en menores costos y menores emisiones de CO2, permitiendo reducir la llamada “huella de carbono”.El valor perfecto sería un PUE = 1.0. Este número resulta prácticamente imposible de alcanzar, ya que quiere decir que toda la energía consumida por los equipos es igual a la ingresada en el Data Center para que funcione completamente, y donde la refrigeración, UPS, etcétera, no tuvieron consumo eléctrico. Adicionalmente esta métrica puede subdividirse en 4, para obtener diferentes valores que permitan hacer un análisis más detallado, como se enumeran a continuación:
PUE0: se calcula igual que el PUE, pero se toma el pico del consumo eléctrico sobre el consumo eléctrico de los equipos de IT a la salida de la UPS (ambos en el último año).
PUE1: se calcula igual que el PUE, pero se toma el consumo eléctrico total acumulado sobre el consumo eléctrico de los equipos de IT acumulados a la salida de la UPS, ambos valores medidos en el último año.
PUE2: similar al anterior, pero la carga de los equipos de IT se toma a la salida de la PDU (Power Distribution Unit).
PUE3: similar al anterior, pero la carga de los equipos de IT se mide en la entrada a ellos.

DCiE: Parámetro utilizado en la evaluación de la eficiencia,  derivado del anterior, que mide el porcentaje de eficiencia llamado DCiE (Data Centre infrastructure Efficiency), la cuantificación de DCiE fue creada para entender más fácilmente la eficiencia del Data Center. Por ejemplo, un valor DCiE de 28% equivale a un PUE de 2,8. Por ejemplo, si tenemos una factura por consumo eléctrico de 1.000 dólares, sabremos que 280 dólares fueron los realmente consumidos por los equipos de IT.

\[DCiE=\frac{Consumo Eléctrico IT}{Consumo Eléctrico Total} * 100 =\frac {1}{PUE} * 100\]

WUE: se utiliza para evaluar la eficiencia del consumo de agua en los equipos de refrigeración en relación a la cantidad de kW/h, conocida como por sus siglas WUE (Water Usage Effectiveness), y se define como el uso anual del agua dividido por la cantidad de energía utilizada por el equipamiento TI. Las unidades de WUE son litros por kW consumidos por hora (calculados anualmente)

\[WUE=\frac{Consumo Anual De Agua (Litros)}{Consumo Eléctrico IT (kW/h)}\]

Para más información, pueden consultar el link completo del artículo completo en PDF aquí.

CCF: es una métrica creada por la empresa Upsite, que se utiliza para gestionar la eficiencia de refrigeración en el Data Center, por las siglas de Cooling Capacity Factor. Se calcula mediante el cociente entre la capacidad total de refrigeración sobre la carga de consumo de los dispositivos de IT (a la salida de la UPS) aumentada en un 10% (ese 10% adicional está atribuido otros factores que interfieren en el cálculo, como ser: iluminación, personas, estructura, etc)

\[CCF=\frac{Capacidad Total Refrigeración}{Consumo Eléctrico IT (Salida UPS) *1,1} =\frac {215 kW}{150 kW * 1,1} = 1,3\]

El valor de CCF recomendado es 1,2 or 120%. Lo que significa que la capacidad de refrigeración está funcionando al 120% de la carga TI. Un CCF que oscila entre 1,0 y 1,1 significa que la capacidad de refrigeración redundante es prácticamente nula. Si los valores van de 1,2 a 1,5 es posible que se puedan realizar modificaciones en los sistemas de enfriamiento que permitan ahorrar dinero. Si el valor es superior a 1,5 estamos sin dudas frente a un ambiente donde se pueden hacer muchas mejoras para reducir los costos en enfriamiento. Generalmente la mayoría de los Data Centers entran en esta última categoría.
Articulo original en PDF disponible aquí, Link a la calculadora de CCF online aquí

ERE: es otra métrica importante creada por The Green Grid utilizada para calcular la eficiencia de la reutilización de la energía (Energy Reuse Effectiveness), como por ejemplo podría ser la reutilización del calor generado por los equipos para aclimatar las instalaciones edilicias. Es una fórmula similar al PUE, pero al consumo eléctrico del Data Center (en el numerador) se le resta el ahorro de energía eléctrica generado por la reutilización.

\[ERE=\frac{(Consumo Eléctrico Equipos Data Center) - (Energía Reutilizada)}{Consumo Eléctrico IT }\]

Link articulo original en PDF aquí.
Para un nivel de detalle mayor y orientado con un enfoque puramente ecologista, existe otra métrica relacionada a esta llamada CUE (Carbon Usage Effectiveness), en donde se analiza la cantidad total de emisiones de CO2  causada por los equipos del Data Center sobre el consumo eléctrico de los equipos de IT.      

UUR: la métrica UUR (Utilización Unitaria de Rack) consiste en evaluar el porcentaje de utilización de cada Rack medido en "U" o unidades de Rack. Esta información es útil para comprender la utilización total y poder asociar esa utilización con el consumo o la generación de calor que provoca cada Rack analizando si el flujo de refrigeración es el correcto, ya que lo no es lo mismo un Rack de comunicaciones que solo tiene patchears que otro donde hay cinco cajones de servidores blade.
Por cada uno de los Racks del Data Center se debe hacer este simple cálculo:

\[UUR=\frac{"U"Disponibles-"U" Utilizadas}{"U" Disponibles} * 100 \]

Aquí les dejo una planilla de cálculos con la fórmula, donde solo tienen que completar la cantidad de U utilizadas y el consumo eléctrico por cada Rack. Archivo aquí.
Para aquellas personas que desean tener un detalle más completo de la utilización del espacio, existen otras métricas más complejas que permiten analizar la disponibilidad física dentro del Data Center, como ser: DCSE (Data Center Space Efficiency Metric) es un conjunto de métricas complejas desarrolladas por David Cappuccio (Gartner) que tienen por finalidad establecer la utilización real de los espacios dentro del Data Center.

Conclusión final: todas las métrica previamente enumeradas carecen de poco valor práctico de aplicación si al momento de hacer los cálculos no se tiene preestablecido cuales son los objetivos buscados, ya sea desde una visión ecológica orientada a la sustentabilidad o la intención de reducir costo. La métrica no es un objetivo en si mismo, sino que debe ser una herramienta para la toma de decisiones, basado en la información obtenida históricamente en el transcurso del tiempo.




domingo, 28 de julio de 2013

Cúal es la Temperatura Correcta de un Data Center?

Dentro del Data Center, mantener la temperatura adecuada de forma estabilizada y controlada es una pauta fundamental del control ambiental, permitiendo el establecimiento y ejecución de una política claramente definida que contribuya a tener un Data Center robusto, confiable y durable.
El rango de temperatura óptimo para un Data Center es entre 17 °C y 21 °C. Es necesario aclarar que esa temperatura no es de carácter obligatorio e inamovible, sino que existe también un margen aceptable de operación que sería de 15 °C y 25 °C.
Cualquier temperatura mayor a 25 °C deberá ser corregida de manera inmediata, ya que implica poner en riesgo el equipamiento del Data Center.

Este rango de temperatura operacional es el indicado por los fabricantes de circuitos integrados para lograr un funcionamiento ideal en rendimiento y durabilidad, devenido de la Ley de Arrhenius [Svante August Arrhenius (1859-1927)  fue un científico físico-químico sueco, galardonado con el Premio Nobel de Química, en 1903] o también conocida como la Regla de los 10 grados. Esta regla dice que la vida de un componente o material se reduce a la mitad por cada 10 ºC de aumento en la temperatura; aplicado inversamente: por 10 ºC de disminución de temperatura, la vida útil de un semiconductor se duplicará.
En los grandes Data Centers, la temperatura es difícil de medir, ya que no existe un único punto de referencia para tomar la muestra. Por ello se debe realizar por pasillos, y hasta en algunos casos, se puede llegar a tomar la temperatura en varios Racks.
Actualmente en el mundo de IT, existe una discusión sobre cuál es la temperatura ideal para operar un Data Center debido a la publicación de las mejores prácticas recomendadas por el reconocido organismo ASHRAE [American Society of Heating, Refrigerating and Air Conditioning Engineers] en 2011, donde la entidad sugiere un rango de operación permitido más amplio según el tipo de Data Center, es decir, más elevado que lo afirmado en su previa publicación en 2008, y más aún comparada contra la versión del 2004.
En 2004 la recomendación de operación era entre 20 °C y 25 °C; en la publicación del año 2008, el rango recomendado se amplió a 18 °C y 27 °C. En el año 2011, el rango recomendado se mantuvo, pero se amplió el rango permitido de 5 °C a 40 °C (cabe aclarar que esto no es para todos los tipos de Data Centers, sino que varía según su clasificación).
El principal impulsor para ampliar los límites provino de la necesidad de la industria de tener mayor flexibilidad, y al mismo tiempo, de reducir costos en enfriamiento, para lo cual se debe tener un claro conocimiento de la edad de los servidores y su política de renovación. No es lo mismo renovar los equipos cada tres, cinco o siete años, si bien cuando se compran los equipos nadie lo hace pensando que van durar 10 años; en la práctica termina siendo mucho más habitual de lo que creemos, ya sea por razones presupuestarias o dificultades de migración.


Si sabemos que nuestros equipos se renuevan siempre cada tres años probablemente no tengamos problemas operando nuestro Data Center a 27 °C. En cambio, si sabemos que la vida útil de nuestros servidores va a ser mucho más extendida, deberíamos pensar en un rango de operación más bajo para así prolongar la duración de los equipos. Como se citó anteriormente, según la Regla de los 10 grados, a menor temperatura, mayor es la durabilidad de los componentes.
Por otra parte la norma TIA/EIA-942 recomienda como rango aceptable de temperatura entre 20 °C y 25 °C.

¿Qué rango de temperatura recomiendan los principales fabricantes de servidores?

  • IBM: 22 °C
  • Dell: 23 °C
  • HP: 22 °C


¿A qué temperatura operan los Data Centers de las grandes empresas?

  • Google: 26 °C (*)
  • Sun: 27 °C   (*)
  • Cisco: 25 °C   (*)
  • Facebook: 22°C   (*)

(*) Información disponible en la sección “Video Tour” de la página http://www.datacenterknowledge.com/


domingo, 9 de junio de 2013

Data Centers Extremos

Un Data Center o también llamado CDP (Centro de Procesamiento de Datos) es un espacio con determinadas características físicas especiales de refrigeración, protección y redundancia, cuyo objetivo es alojar todo el equipamiento tecnológico de la compañía brindando seguridad y confiabilidad. 
La variedad y calidad de los niveles de servicio que pueden alcanzar son muy variados, dependiendo principalmente de las necesidades del negocio se desean satisfacer, ya que no es lo mismo ser un proveedor de servidores "cloud" de misión crítica, que alojar algunos servidores de uso interno de una organización donde la actividad principal es por ejemplo el análisis y procesamiento de información para investigaciones poblacionales.
Estas variedades son enormes y también así de diversos los costos asociados, ya que se puede pasar de un Data Center sin redundancia a uno son varios niveles de redundancia por cada componente.
A continuación se ejemplificarán algunos de los Data Centers más extremos del mundo según esas necesidades o estrategias de diseño.

Extremos en seguridad:
Un ejemplo de Data Center con medidas de seguridad extremas podría ser el que terminará de construir para 2013 la agencia estadounidense NSA (National Security Agency) en Bluffdale, Utah, destinado a almacenar el sistema de espionaje más complejo del mundo, capaz de analizar: búsquedas de ciertas palabras claves, correos electrónicos, llamadas telefónicas, datos bancarios, fotos, etcétera. La revista Wired reveló en abril de 2012 que el programa tiene un presupuesto estimado en 2.000 millones de dólares para una superficie aproximada 9.000 m2, capaz de albergar cientos de Racks, además contará con otro espacio mucho más grande para oficinas administrativas y técnicas, lo que lo convierte también es uno de los más costosos. Solo para el programa antiterrorista perimetral se destinaron 10 millones de dólares, que incluye una valla diseñada para detener un vehículo de hasta 6 toneladas circulando a 80 km/h. Además posee su propia subestación eléctrica para una demanda de 65 MW, combustible para operar los generadores por tres días consecutivos y un sistema de enfriamiento capaz de proporcionar 60.000 toneladas de enfriamiento con tanques de agua que pueden acumular más de 6 millones de litros de agua

Otro ejemplo es el del ISP sueco, Bahnhof, que en 2008 rediseñó las instalaciones de un bunker militar antinuclear construido en Escolmo durante la guerra fría, como espacio físico para alojar sus equipos.
Ubicado a 30 metros bajo tierra, con puertas de 40 cm de ancho, 2 motores diesel de submarino con capacidad de 1,5 MW cada uno para generar energía en caso de interrupción, tres cableados principales de Internet redundantes ( dos de fibra óptica y uno de cobre)
Si desean ver las fotos completas, remitirse al artículo original aquí



Extremos en velocidad de red:

¿Cual es el Data Center que ofrece mayor velocidad? Realmente la respuesta es difícil, ya que actualmente en el mercado existen equipos de red con capacidades de transmitir por fibra óptica a cortas distancias a 40 Gb, obviamente, para los gigantes informáticos como Google, IBM, Cisco, etc, comprar varios de estos dispositivos y ampliar la capacidad de red a 100Gb no es tarea compleja, pero actualmente científicos del Laboratorio Nacional Los Alamos, de la Universidad de California, desarrollaron un prototipo de muchísimo más rápida llamada: red cuántica que lleva más de dos años en actividad.
Además de conseguir velocidades nunca antes alcanzadas y sería invulnerable ya que utiliza un nuevo paradigma computacional. Si bien desde hace un tiempo se habla de la computación cuántica, el retraso en su implementación se debe a que todavía está lejos de ser una realidad comercial. Ver nota recomendada aquí. Actualmente los científicos que trabajan en ella estiman que no será masiva hasta dentro de 10 años.

Extremos en condiciones ambientales ecológicas:

Existen muchos ejemplos de Data Centers ecológicos, ya que la forma en que refrigeran los equipos y como generan la energía eléctrica son las dos variables que más influyen a la hora de determinar la eficiencia ecológica y varían según la ubicación geográfica.
Google terminó de construir en Hamina, Finlandia, ubicado en una antigua papelera, con una inversión de 252 millones de dólares, y para el cual utilizarán un sistema de refrigeración por agua. Gracias a su excelente ubicación geográfica puede tomar el agua fría del Mar Báltico, ahorrando así una considerable cantidad de dólares por año en refrigeración. Este tipo de estrategias le permiten a Google reducir año a año de manera continua el uso de energía necesaria para mantener operativo sus servidores, como lo muestra una publicación reciente de la firma en su blog.  Y más aún cuando se inaugure en 2015 la central eólica ubicada en Maevaara que proveerá energía eléctrica no contaminante.

Otro caso es el de la empresa de hosting estadounidense AISO que en su Data Center de 
2.000 m2, dispone de 120 paneles solares, lo que le hace ahorrar hasta 3.000 dólares mensuales en electricidad. Para la iluminación de sus oficinas tiene montado un sistema de tubos que redirigen la luz solar hacia las lamparas del interior. Adicionalmente 
posee de un sistema recolector de agua de lluvia, que luego es utilizado en la refrigeración para el aire acondicionado de los equipos, lo que le permite tener un PUE = 1,14. Este podría ser en definitiva uno de los centros de datos más “verdes” del planeta.
Facebook también está innovando en este área inaugurando un nuevo Data Center en Lulea, suecia.con un PUE=1,07 basado en energía hidroeléctrica 100% renovable, ver link con el anuncio oficial aquí.

Extremos en tamaño:

El Data Center más grande del mundo está ubicado en Langfang, China. El proyecto ocupa un área de 1.341.867 m2, con  2.622.470 m2 de construcción, de los cuales 620.000 m2 estará destinados al sector exclusivo para Data Center, lo convierte en el mayor emprendimiento del mundo.



sábado, 4 de mayo de 2013

DCIM mucho más que una Herramienta de Gestión


La administración de la infraestructura de un Data Center es una tarea compleja, pero por suerte en el mercado existen herramientas relativamente nuevas llamadas DCIM, Data Center Infrastructure Management que proveen la capacidad de lograr un buen rendimiento de los recursos administrados, buscando la optimización y planificación continua de una manera simple, considerando que cada vez hay más interdependencia entre la capa física y la capa lógica de la infraestructura. Esto se logra por medio de un monitoreo integral que facilita la gestión, la eficiencia y mantiene la disponibilidad.
Cuántas veces los administradores de Data Centers escuchamos este diálogo cuando hablamos con los Administradores de red:
¿Para qué se utiliza ese servidor que está encendido allí?
Creo que ese equipo no lo utiliza nadie, pero estaba funcionando desde antes de que ingresara a la empresa. 
Esa respuesta puede parecer ilógica, pero resulta bastante habitual en la práctica, sobre todo en ambientes medianos a grandes. Probablemente ese equipo está encendido desde hace años y nadie lo usa o quizás la aplicación fue migrada a otro servidor, generando calor, consumiendo energía, es decir, haciéndole perder dinero a la empresa innecesariamente.

Antiguamente la misión del responsable del Data Center era solo dar soporte a las necesidades de negocio, cumpliendo con los planes actuales. Pero hoy en día, la tendencia es distinta, la gestión administrada debe ser capaz de brindar una ventaja competitiva para lograr el éxito del negocio, haciéndolo ágil y eficiente de manera confiable.  Los cambios de las economías son muy rápidos y el no ser capaz de responder de forma satisfactoria puede hacer fracasar un proyecto o perder una oportunidad única. Por eso, los ojos deben estar puestos en el futuro y en las próximas tendencias.
Los desafíos pueden tener orígenes muy variados: económicos, tecnológicos, el ámbito de los negocios y lo relacionado con el cumplimiento de normativas o regulaciones, por ello surgieron en los últimos años herramientas como DCIM que facilitan esta tarea, por ejemplo ayudándonos a medir el PUE en tiempo real.

Las funcionalidades de información deseables de una herramienta de gestión DCIM son:
·    Centralización: toda la información puede ser consultada desde un solo lugar.
·    Autodescubrimiento: a medida que se agrega nuevo hardware, deberá ser visualizado en la consola (sea físico o virtual), quizás haya una limitación por fabricante o modelo.
·    Visualización: la herramienta debe ser capaz de mostrar gráficos de capacidad en tiempo real y extraer reportes, para efectuar comparaciones a futuro de la capacidad actual del Data Center, como ser: red, electricidad, UPS, PUE, almacenamiento, temperatura, espacio en Racks, etcétera.
·   Comunicación: capacidad de enviar notificaciones, alertas, correos u otras notificaciones, dadas determinadas condiciones.
·   Generación de alertas preventivas: Mediante la inteligencia predictiva puede ser capaz de notificar los problemas de capacidad a corto plazo. Cabe destacar que un reciente estudio de la consultora IDC concluyó que el 84% de los encuestados han tenido problemas de planificación de la capacidad de la infraestructura (ver paper aquí).


La decisión de adquirir un software de DCIM no es simple, ya que el software es costoso y requiere dedicación de recursos adicionales en la configuración y puesta a punto del sistema. Dichas implementaciones no son simples y pueden llevar tiempo. El objetivo final de una herramienta DCIM es tener el control centralizado de los recursos, generar reportes sobre la base de la información recolectada, y tomar decisiones que permitan optimizar los recursos, generando ahorros en la operatoria, y si bien es una herramienta que se encuentra en amplio crecimiento es importante que elijamos la que mejor se adapta a nuestra infraestructura ya que existen gran variedad de proveedores en el mercado de DCIM y no todos son iguales (ni los precios tampoco, ya que son bastante caras). En 2010 Gartnet predijo que este tipo de herramientas van a tener un crecimiento en penetración en el mercado del 1% al 60% para el año 2014.

El objetivo final de una herramienta DCIM es lograr evolucionar desde el “Caos” que son las planillas del cálculos, a un ambiente “Informado y con aplicaciones consolidadas” para luego evolucionar en un proceso de “Optimización” y por último llegar a un modelo de “Data Center planificado estratégicamente”. Como resultado final de una buena implementación de una herramienta de DCIM se puede ver una Infraestructura inteligente, optimizada y hasta que es capaz de reducir los costos operativos, para más detalles les recomiendo este paper que se puede bajar aquí: "Getting started with DCIM". También les recomiendo este paper sobre planificación estratégica de “Data Center Knowledge Guide to Data Center Infrastructure Management (DCIM)” que se puede bajar aquí.

Para evitar el uso de planillas de cálculo como control de inventario de los equipos dentro del Data Center, que suelen ser estáticas y no están actualizadas debidamente (en especial, cuando hay varios sitios que administrar y el crecimiento es grande), existen herramientas dinámicas que facilitan la tarea de DCIM, como ser:  CA DCIM 4.0 de Computer Associates; Asset Point de Align Communications; InfraStruXure de APC; Operations Manager de HP; Nlyte, OpenData Software de Modius; o Avocent de Emerson, solo por nombrar alguas. Muchos de ellos poseen funcionalidad que les permiten tomar la información de manera automática según el hardware. Les recomiendo leer el paper que se puede bajar aquí: “Enterprise Managment associates – Radar for Data Center Infrastructure Management (DCIM)” publicado en Diciembre del 2012, donde se evalúan muchos de estos productos según sus características más importantes, ya que no todos son iguales, variando en niveles de integración, funcionalidades operativas y de gestión.

Cabe destacar que existe una solución económica (pero estática con pocas funcionalidades) basada en software libre llamada Open DCIM http://www.opendcim.org y que se instala fácilmente, basándose en una solución Web para reemplazar las planillas de cálculos. Complementariamente en el sitio http://www.dcimexpert.com/ se pueden ingresar sugerencias y recomendaciones para mejorar las tareas de gestión.



"Por muy hermosa que sea la estrategia, de vez en cuando debes mirar los resultados" Winston Churchill (1874–1965) Político, escritor británico. Premio Nobel de Literatura en 1953.


domingo, 24 de marzo de 2013

Madurez del Data Center - DCMM

A menudo hablamos de optimización y mejores prácticas para logra un Data Center ecológico y sustentable manteniendo una relación eficiente entre disponibilidad y costos. Otra perspectiva de ver los mismos objetivos es a través del análisis de los distintos componentes que lo integran, analizando la “madurez” del Data Center en base a un modelo referencial desarrollado por la organización “The Green Grid” llamado DCMM (Data Center Maturity Model) publicado en 2011, el cual permite clasificar el nivel de “madurez” de los componentes del Data Center. Este modelo es similar al popular estándar ingenieril para el desarrollo de software: CMM  o también llamado CMMI que establece 5 niveles de perfeccionamiento en la forma que se construye software.
Del mismo modo el DCMM evalúa y clasifica de 0 a 5 los niveles de cada uno de los componentes, donde 0 es el nivel mínimo o también llamado “nivel de caos” y siendo 5 el más eficiente o también llamado “nivel visionario”.

DCMM analiza el Data Center y sus elementos en base a dos puntos principales, como ser la infraestructura física y la tecnología allí alojada en función de la eficiencia y la inversión de recursos.

Infraestructura del Data Center:
  • Alimentación eléctrica: Principalmente toma como base el porcentaje de eficiencia eléctrica, operación, monitoreo, materiales utilizados entre otras variables y determina valores de 0 a 5.
  • Refrigeración: Analiza el PUE de los equipos de refrigeración, los materiales, operatoria, control ambiental y emisiones, entre otros parámetros y en base a eso determina niveles de 0 a 5.
  • Otros: Evalúa de 0 a 5 la capacidad real con respecto a la que se está utilizando, la construcción, los materiales comprados, la iluminación, etc.
  • Gestión: Similar a los puntos anteriores, considerando la eficiencia de consumo eléctrico, de agua, reutilización del calor generado, como se colecta la información (centralizada o descentralizada), etc.

Tecnología de los equipos:
  •  Procesamiento: Evalúa la utilización de procesamiento total del Data Center, adopción de estándares, forma de operación, gestión eléctrica integrada, cantidad de servidores, y en función de cuáles son las aplicaciones que se ejecutan basado en las mejores prácticas y lo clasifica de 0 a 5.
  • Almacenamiento: Se analiza la cantidad de datos almacenados en función de la capacidad disponible, la forma de gestión y operación, la arquitectura, la tecnología y la asignación de espacio, en donde la mejor calificación posible es también 5.
  • Red: Para clasificarlos se tiene en cuenta la utilización de la red, el tráfico de paquetes, la forma de operación, la tecnología utilizada, la topología, la performance y el aprovisionamiento del ancho de banda.
  • Otros: Se analiza la capacidad total de los elementos tecnológicos, la utilización de los mismos, certificaciones de los componentes, documentación relacionada a los equipos (por ejemplo un catálogo), estrategias de reciclado, políticas, etc.
El en gráfico se puede ver como interactuan los distintos componentes para poder alcanzar los distintos niveles en función de la eficiencia y los recursos en base a los distintos niveles alcanzados para cada elemento interviniente en el Data Center.



Para aquellos que deseen profundizar sobre este tema los invito a ver la página oficial de DCMM (en inglés)
Para descargar el gráfico completo detallado en formato pdf hacer click aquí. (en inglés)



"El orden y la simplificación son los primeros pasos hacia el dominio de un tema, el enemigo real es lo desconocido"  -- Thomas Mann  (1875-1955) Escritor alemán. Premio Nobel de Literatura en 1929



sábado, 12 de enero de 2013

Camino al Data Center Ecológico


Cuando se habla de eficiencia y ecología dentro del Data Center, lo primero que se nos viene a la mente es la métrica PUE (Power Usage Effectiveness) que mide el valor de la eficiencia eléctrica de los equipos de IT en relación al consumo eléctrico total, creada por la organización The Green Grid 

                  Consumo eléctrico total               100 kW
PUE =    -------------------------------------------   =   --------------  =  1,7
                  Consumo equipos de IT                58 kW

Si bien el organismo no establece un valor mínimo, mientras menor sea el valor PUE, mejor será el aprovechamiento eléctrico, lo que se traduce en menores costos y emisiones de CO2, permitiendo reducir la llamada huella de carbono.
Por los general el valor de PUE de los Data Centers del mercado oscila entre 1,2 y 4, aunque el valor perfecto sería un PUE = 1.0 que resulta prácticamente imposible de alcanzar, ya que quiere decir que toda la energía consumida por los equipos es igual a la ingresada en el Data Center para que funcione completamente, y donde la refrigeración, UPS, entre otros, no tuvieron consumo eléctrico alguno. Esto es realmente difícil de que suceda. Un PUE = 2 representa que los sistemas que forma la infraestructura consumen los mismo que todos los equipos de IT.
Pero la pregunta es ¿ Si el PUE de un Data Center es practicamente =1, estamos frente a una instalación ecológicamente sustentable ?
La respuesta es claramente NO. Si bien es cierto que el PUE bajo es uno de los mayores determinantes para asegurar emisiones reducidas, aquí en entran en juego otras variables a analizar, como por ejemplo los materiales usados en el Data Center, la frecuencia renovación de equipos que generan basura electrónica y contaminan si no se toman acciones para su reciclaje: 
Para explicar este punto veamos un ejemplo: El PUE actual de nuestro Data Center es 1,5, sin embargo para disminuir el consumo eléctrico se decide aumentar la temperatura de operación del Data Center, pasando de 21 ºC a un máximo de 32 ºC, sin dudas el consumo eléctrico será menor, ya que los equipos de refrigeración funcionarán menos, haciendo que el PUE disminuya hasta por ejemplo 1,2. Pero esta decisión tiene un efecto colateral con el paso del tiempo: la degradación de componentes, que hará tener que reemplazar piezas más frecuentemente, según la Ley de Arrhenius  o también conocida como la Regla de los 10 grados. Esta regla dice que la vida de un componente o material se reduce a la mitad por cada 10 ºC de aumento en la temperatura; aplicado inversamente: por 10 ºC de disminución de temperatura, la vida útil de un semiconductor se duplicará, También causará que la vida útil de las baterías que conforman la UPS sea menor a la establecida por el fabricante, aumentando costos y generando mas desperdicios. Por eso un PUE bajo no asegura que estemos frente a un Data Center sustentable con el medio ambiente a largo plazo.
Aquí se enumeran algunas recomendaciones para lograr un Data Center realmente ecológico:
  • Analizar la eficiencia eléctrica interna de todos los componentes que se compran.
  • Aprovechar al máximo los recursos, la Virtualización es de gran ayuda para lograr este objetivo.
  • Utilizar distribución de Corriente Continua en todos los casos que sea posible, más detalles aquí.
  • Reemplazar los tubos fluorescentes por LEDs, consumen menos, generan menos calor y proveen buena iluminación (asegurar que proveen iluminación suficiente para las cámaras de seguridad).
  • Colocar los equipos que generan más calor próximos a los enfriadores.





martes, 11 de diciembre de 2012

Eficiencia de la Corriente Continua en el Data Center


Dentro del Data Center como en nuestra vida cotidiana interactuamos tanto con la corriente alterna (CA – corriente que circula en ambos sentidos) como con la corriente continua (CC – corriente que circula en un solo sentido) según las necesidades del equipamiento que estemos utilizando, pero debido a la gran cantidad de energía que se consume dentro del Data Center y las pérdidas de energía entre cada conversión, una distribución final de CC podría ser la varita mágica para los problemas de eficiencia y ahorrar millones en costos eléctricos.
Para entender un poco más el problema hagamos un repaso histórico del origen de ambas corrientes. A finales del siglo XIX, Thomas Edison, gran inventor Estadounidense (aunque sus biógrafos más estudiosos lo reconocen como mejor empresario que científico y fundador de General Electric) impulsaba la CC que había descubierto; por el otro lado el brillante científico Serbio Nikolo Testa, promovía la CA que había inventado mientras trabajaba para la empresa Westinghouse, y si bien Testa había trabajado para Edison en 1884 ayudándolo a mejorar sus sistemas de CC, abandonó su posición en 1886 para emprender otro proyecto de generación de electricidad que sea más eficiente. Durante un período que duró años esas dos alternativas de corriente se disputaban cual sería el estándar para la masificación y no en vano fue llamado “La guerra de las corrientes” ya que ambas empresas querían imponer sistema eléctrico. Tan despiadada era la campaña, que para desprestigiar e intimidar a la población sobre el uso de la CA, personas allegadas a Edison electrocutaban públicamente vacas, caballos, perros y gatos usando CA, incluso llegaron a electrocutar un elefante llamado Topsy en 1903, aunque para ese entonces la CC ya había perdido la batalla, ya que la CA había demostrado ser más eficiente y económica cuando en 1893 obtuvo la licitación para iluminar la Feria Mundial de Chicago por un precio que era la mitad del presentado por su competidor. Para contrarrestar esos efectos de imagen negativa de la CA Testa sometió su cuerpo al paso de CA logrando desmitificar la excesiva peligrosidad que querían demostrar los defensores de la CC y pese a todos esos intentos de desprestigio Edison no logró imponer su sistema eléctrico ya que presentaba ciertas ventajas y ciertas desventajas que lo hacían útiles para ciertas cosas e ineficientes para otras.
Con el paso de los años la CA se quedó con el triunfo de la distribución masiva por su capacidad de recorrer grandes distancias sin sufrir pérdidas de tensión, pero el problema es que no se puede almacenar para utilizarla en otro momento y la CC se impuso en lugares donde se requiere almacenar energía, como: pilas o  baterías y en equipos que requieran baja potencia para funcionar, pero su principal defecto es que no se puede transportar en líneas de alta tensión por grandes distancias ya que las pérdidas eléctricas por km son muy grandes.  Por ello en el Data Center se necesitan de ambas como se ve en el gráfico de un ejemplo típico de cómo fluye la electricidad:


Volviendo a la pregunta inicial: ¿Es realmente posible una solución donde solo se utilice CC en un Data Center? La respuesta es compleja, pero podríamos decir que si es posible, ya que la manera de lograrlo sería mejorando la eficiencia, y eso se puede hacer eliminando los puntos donde se realizan las conversiones de CA/CC y viceversa.
Como se puede ver en el gráfico anterior los componentes internos de los equipos de IT utilizan CC para su funcionamiento, pero para que la corriente llegue hasta allí, debe pasar por muchos pasos, desde la red eléctrica (CA), convertirse a (CC) para poder almacenarse en la UPS, luego se rectifica la corriente para llegar a la PDU (CA), desde allí llegará a los equipos y por último la fuente interna la transformará por última vez (CC) para alimentar a los procesadores, memorias, y otros circuitos internos.
Cada una de estas transformaciones de corrientes genera pérdidas de eficiencia, que se transforman en pérdidas económicas. Pero ¿qué pasaría si el proveedor de red eléctrica suministrara CC, cargara la UPS, pasara por la PDU y llegara a los equipos directamente sin transformaciones? Este escenario sería óptimo, ya que las pérdidas dentro del Data Center serían muy pocas y la eficiencia sería muy alta. Pero en la práctica resulta muy difícil que eso pueda suceder por diversos factores:
Prácticamente no existen proveedores de red eléctrica que suministren CC, por la deficiencia que presenta al transportarlo en largas distancias.
Hay muy pocos proveedores en el mercado de IT que ofrezcan equipos para ser alimentados directamente con CC y los pocos que hay tiene precios más elevados que los alimentados con CA.
Por estos factores limitantes podemos decir que es realmente difícil lograrlo, salvo que se diseñe un gran Data Center con su propia central eléctrica ubicada en las cercanías y que provea CC a un costo apropiado y sin pérdidas de eficiencia.

En el siguiente: link se pueden apreciar las innovaciones tecnológicas propuestas por la empresa ABB sobre este tema.